Les formations Deep Learning

Les formations Deep Learning

Des cours de formation Deep Learning (DL) en direct, organisés à l'échelle locale, illustrent les principes fondamentaux et les applications de Deep Learning et traitent de sujets tels que l'apprentissage machine profond, l'apprentissage structuré profond et l'apprentissage hiérarchique La formation Deep Learning est disponible en tant que «formation en direct sur site» ou «formation en direct à distance» La formation en direct sur site peut être effectuée localement dans les locaux du client Quebec ou dans les centres de formation d'entreprise NobleProg à Quebec La formation en ligne à distance est réalisée au moyen d'un ordinateur de bureau interactif et distant NobleProg Votre fournisseur de formation local.

Machine Translated

Nos Clients témoignent

★★★★★
★★★★★

Nos clients

Sous-catégories Deep Learning (DL)

Plans de cours Deep Learning (DL)

Nom du Cours
Durée
Aperçu
Nom du Cours
Durée
Aperçu
14 hours
Aperçu
Ce cours couvre l'IA (mettant l'accent sur l' Machine Learning et l' Deep Learning ) dans l'industrie Automotive . Cela aide à déterminer quelle technologie peut (potentiellement) être utilisée dans plusieurs situations de la voiture: de l'automatisation simple à la prise de décision autonome en passant par la reconnaissance d'images.
21 hours
Aperçu
L'apprentissage en profondeur est un sous-domaine de l'apprentissage automatique. Il utilise des méthodes basées sur l'apprentissage de représentations de données et de structures telles que les réseaux de neurones.

Keras est une API de réseaux de neurones de haut niveau permettant un développement et une expérimentation rapides. Il fonctionne sur TensorFlow , CNTK ou CNTK .

Cette formation en direct animée par un instructeur (sur site ou à distance) est destinée aux développeurs qui souhaitent construire une voiture autonome en utilisant des techniques d'apprentissage en profondeur.

À la fin de cette formation, les participants seront en mesure de:

- Utiliser des techniques de vision par ordinateur pour identifier les voies.
- Utilisez Keras pour construire et former des réseaux de neurones convolutionnels.
- Former un modèle d'apprentissage en profondeur pour différencier les panneaux de signalisation.
- Simulez une voiture entièrement autonome.

Format du cours

- Conférence interactive et discussion.
- Beaucoup d'exercices et de pratique.
- Mise en œuvre pratique dans un environnement de laboratoire réel.

Options de personnalisation du cours

- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser cela.
21 hours
Aperçu
Ce cours couvre l'IA (mettant l'accent sur l' Machine Learning et l' Deep Learning )
28 hours
Aperçu
Ce cours vous donnera des connaissances sur les réseaux de neurones et plus généralement sur les algorithmes d’apprentissage automatique, d’apprentissage approfondi (algorithmes et applications).

Cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la technologie TensorFlow : TensorFlow , Caffe , Teano, DeepDrive, Keras , etc. Les exemples sont réalisés dans TensorFlow .
14 hours
Aperçu
Cette session de formation en classe contiendra des présentations, des exemples informatiques et des exercices d’études de cas à entreprendre avec les bibliothèques de réseaux neuronales et profondes pertinentes.
14 hours
Aperçu
OpenFace est un logiciel de reconnaissance faciale opensource basé sur Python et Torch basé sur la recherche FaceNet de Google Dans cette formation en ligne, les participants apprendront à utiliser les composants OpenFace pour créer et déployer un exemple d'application de reconnaissance faciale À la fin de cette formation, les participants seront en mesure de: Travaillez avec les composants OpenFace, notamment dlib, OpenVC, Torch et nn4 pour implémenter la détection, l'alignement et la transformation des visages Appliquer OpenFace aux applications realworld telles que la surveillance, la vérification d'identité, la réalité virtuelle, les jeux, l'identification des clients réguliers, etc Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
7 hours
Aperçu
Au cours de cette formation en direct animée par un instructeur, les participants apprendront à configurer et à utiliser OpenNMT pour la traduction de divers ensembles de données. Le cours commence par un aperçu des réseaux de neurones appliqués à la traduction automatique. Les participants effectueront des exercices en direct tout au long du cours pour démontrer leur compréhension des concepts appris et obtenir les commentaires de l'instructeur.

À la fin de cette formation, les participants disposeront des connaissances et de la pratique nécessaires pour mettre en œuvre une solution OpenNMT direct.

Des échantillons de langue source et cible seront pré-arrangés selon les exigences du public.

Format du cours

- Partie de conférence, partie de discussion, pratique intense
14 hours
Aperçu
OpenNN est une bibliothèque de classes open-source écrite en C ++ qui implémente des réseaux de neurones, pour une utilisation en apprentissage automatique.

Dans ce cours, nous allons passer en revue les principes des réseaux de neurones et utiliser OpenNN pour implémenter un exemple d'application.

Public
Les développeurs de logiciels et les programmeurs souhaitant créer des applications d'apprentissage approfondi.

Format du cours
Lecture et discussion associées à des exercices pratiques.
21 hours
Aperçu
PaddlePaddle (PArallel Distributed Deep LEarning) est une plateforme d'apprentissage en profondeur évolutive développée par Baidu Dans cette formation en ligne, les participants apprendront comment utiliser PaddlePaddle pour permettre un apprentissage approfondi dans leurs applications de produits et de services À la fin de cette formation, les participants seront en mesure de: Configurer et configurer PaddlePaddle Configurer un réseau neuronal convolutif (CNN) pour la reconnaissance d'image et la détection d'objets Mettre en place un réseau neuronal récurrent (RNN) pour l'analyse des sentiments Mettre en place un apprentissage en profondeur sur les systèmes de recommandation pour aider les utilisateurs à trouver des réponses Prédisez les taux de clics (CTR), classifiez les ensembles d'images à grande échelle, effectuez la reconnaissance optique des caractères (OCR), effectuez des recherches de classement, détectez les virus informatiques et implémentez un système de recommandation Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Aperçu
Dans cette formation en ligne, les participants apprendront les techniques d'apprentissage automatique les plus pertinentes et les plus avancées de Python, tout en construisant une série d'applications de démonstration impliquant des images, de la musique, du texte et des données financières À la fin de cette formation, les participants seront en mesure de: Implémenter des algorithmes d'apprentissage automatique et des techniques pour résoudre des problèmes complexes Appliquer l'apprentissage en profondeur et l'apprentissage semi-supervisé aux applications impliquant des données d'image, de musique, de texte et financières Pousser les algorithmes Python à leur potentiel maximal Utiliser des bibliothèques et des paquets tels que NumPy et Theano Public Développeurs Analystes Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Aperçu
Dans cette formation en direct, les participants apprendront des techniques avancées d'apprentissage automatique avec R tout en progressant dans la création d'une application Realworld À la fin de cette formation, les participants seront en mesure de: Utiliser des techniques comme l'accord hyperparamétrique et l'apprentissage profond Comprendre et mettre en œuvre des techniques d'apprentissage non supervisées Mettez un modèle en production pour l'utiliser dans une application plus grande Public Développeurs Analystes Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Aperçu
SINGA est une plate-forme d'apprentissage en profondeur distribuée destinée à la formation de grands modèles d'apprentissage en profondeur sur de grands ensembles de données. Il est conçu avec un modèle de programmation intuitif basé sur l'abstraction de la couche. Une variété de modèles d'apprentissage en profondeur populaires sont pris en charge, notamment les modèles à rétroaction, y compris les réseaux de neurones convolutionnels (CNN), les modèles d'énergie tels que la machine de Boltzmann restreinte (RBM) et les réseaux de neurones récurrents (RNN). De nombreuses couches intégrées sont fournies aux utilisateurs. L'architecture SINGA est suffisamment flexible pour exécuter des cadres de formation synchrones, asynchrones et hybrides. SINGA prend également en charge différents schémas de partitionnement de réseau neuronal pour paralléliser la formation de grands modèles, à savoir le partitionnement en dimension de lot, en dimension de fonctionnalité ou en partitionnement hybride.

Public

Ce cours est destiné aux chercheurs, ingénieurs et développeurs cherchant à utiliser Apache SINGA tant que cadre d'apprentissage approfondi.

Une fois ce cours terminé, les délégués:

- comprendre la structure et les mécanismes de déploiement de SINGA
- être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
- être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
- être capable de mettre en œuvre une production avancée telle que des modèles de formation, des conditions d'intégration, la création de graphiques et la journalisation
14 hours
Aperçu
Au cours de cette formation en direct animée par un instructeur, les participants apprendront à utiliser Matlab pour concevoir, construire et visualiser un réseau de neurones à convolution permettant la reconnaissance d'images.

À la fin de cette formation, les participants seront en mesure de:

- Construire un modèle d'apprentissage en profondeur
- Automatiser l'étiquetage des données
- Travailler avec des modèles de Caffe et TensorFlow - Keras
- Former les données en utilisant plusieurs GPU , le cloud ou des clusters

Public

- Les développeurs
- Ingénieurs
- Experts du domaine

Format du cours

- Partie de conférence, partie de discussion, exercices et exercices intensifs
7 hours
Aperçu
Tensor2Tensor (T2T) est une bibliothèque modulaire et extensible pour la formation de modèles IA dans différentes tâches, en utilisant différents types de données d'apprentissage, par exemple: reconnaissance d'image, traduction, analyse, sous-titrage d'image et reconnaissance vocale Il est géré par l'équipe Google Brain Dans cette formation en ligne, les participants apprendront comment préparer un modèle de deepplearning pour résoudre plusieurs tâches À la fin de cette formation, les participants seront en mesure de: Installez tensor2tensor, sélectionnez un ensemble de données, entraînez et évaluez un modèle AI Personnaliser un environnement de développement en utilisant les outils et composants inclus dans Tensor2Tensor Créer et utiliser un modèle unique pour apprendre simultanément un certain nombre de tâches à partir de plusieurs domaines Utiliser le modèle pour apprendre des tâches comportant un grand nombre de données d'apprentissage et appliquer ces connaissances aux tâches pour lesquelles les données sont limitées Obtenir des résultats de traitement satisfaisants en utilisant un seul GPU Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Aperçu
TensorFlow est une bibliothèque populaire et l' apprentissage automatique mis au point par Go Ogle pour l' apprentissage en profondeur, le calcul numérique, et l' apprentissage de la machine à grande échelle. TensorFlow 2.0, publié en janvier 2019, est la dernière version de TensorFlow et inclut des améliorations en termes d'exécution, de compatibilité et de cohérence des API.

Cette formation en direct, animée par un instructeur (sur site ou à distance), est destinée aux développeurs et aux experts en informatique qui souhaitent utiliser Tensorflow 2.0 pour créer des prédicteurs, des classificateurs, des modèles génératifs, des réseaux de neurones, etc.

À la fin de cette formation, les participants seront en mesure de:

- Installez et configurez TensorFlow 2.0.
- Comprenez les avantages de TensorFlow 2.0 par rapport aux versions précédentes.
- Construire des modèles d'apprentissage en profondeur.
- Implémenter un classificateur d'image avancé.
- Déployez un modèle d'apprentissage approfondi sur le cloud, les appareils mobiles et l'IoT.

Format du cours

- Conférence interactive et discussion.
- Beaucoup d'exercices et de pratique.
- Mise en œuvre pratique dans un environnement de laboratoire réel.

Options de personnalisation du cours

- Pour demander une formation personnalisée pour ce cours, veuillez nous contacter pour organiser cela.
- Pour en savoir plus sur TensorFlow , visitez le site: https://www.tensorflow.org/
7 hours
Aperçu
TensorFlow Serving est un système destiné à servir les modèles d'apprentissage automatique (ML) à la production Dans cette formation en ligne, les participants apprendront comment configurer et utiliser TensorFlow Serving pour déployer et gérer des modèles ML dans un environnement de production À la fin de cette formation, les participants seront en mesure de: Former, exporter et servir divers modèles TensorFlow Tester et déployer des algorithmes à l'aide d'une architecture unique et d'un ensemble d'API Étendre TensorFlow Serving pour servir d'autres types de modèles au-delà des modèles TensorFlow Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
21 hours
Aperçu
TensorFlow est une API de deuxième génération de la bibliothèque de logiciels open source de Go ogle pour Deep Learning . Le système est conçu pour faciliter la recherche en apprentissage automatique et faciliter la transition rapide d'un prototype de recherche à un système de production.

Public

Ce cours est destiné aux ingénieurs souhaitant utiliser TensorFlow pour leurs projets d' Deep Learning .

Une fois ce cours terminé, les délégués:

- comprendre la structure et les mécanismes de déploiement de TensorFlow
- être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
- être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
- être capable de mettre en œuvre une production avancée comme des modèles de formation, la création de graphiques et la journalisation
28 hours
Aperçu
Ce cours explore, avec des exemples spécifiques, l’application de Tensor Flow aux objectifs de la reconnaissance d’image.

Public

Ce cours est destiné aux ingénieurs qui souhaitent utiliser TensorFlow aux fins de la reconnaissance d'image.

Une fois ce cours terminé, les délégués seront en mesure de:

- comprendre la structure et les mécanismes de déploiement de TensorFlow
- effectuer des tâches d'installation / environnement de production / architecture et configuration
- évaluer la qualité du code, effectuer le débogage, la surveillance
- implémenter une production avancée telle que des modèles de formation, la création de graphiques et l'enregistrement
21 hours
Aperçu
Torch est une bibliothèque d'apprentissage automatique à code source ouvert et un framework informatique scientifique basé sur le Lua programmation Lua . Il fournit un environnement de développement pour la numérique, l'apprentissage automatique et la vision par ordinateur, avec un accent particulier sur l'apprentissage en profondeur et les réseaux de convolution. Il est l' un des plus rapides et des cadres les plus flexibles pour la machine et l' Deep Learning en Facebook Go Deep Learning et est utilisé par des entreprises telles que Facebook , Go Ogle, Twitter, NVIDIA, AMD, Intel, et beaucoup d' autres.

Dans cette formation en direct dirigée par un instructeur, nous couvrons les principes de la Torch , ses caractéristiques uniques et son application possible dans des applications réelles. Nous effectuons de nombreux exercices pratiques tout au long de la démonstration et de la mise en pratique des concepts appris.

À la fin du cours, les participants auront une compréhension approfondie des fonctionnalités et des capacités sous-jacentes de Torch , ainsi que de son rôle et de sa contribution au sein de l'espace d'intelligence artificielle, par rapport à d'autres frameworks et bibliothèques. Les participants auront également reçu la pratique nécessaire pour mettre en œuvre Torch dans leurs propres projets.

Format du cours

- Vue d'ensemble de l' Deep Learning machine et en Deep Learning
- Exercices de codage et d'intégration en classe
- Questions de test semées le long du chemin pour vérifier la compréhension
7 hours
Aperçu
L'unité de traitement Tensor (TPU) est l'architecture que Google a utilisée en interne depuis plusieurs années, et est maintenant en train de devenir disponible pour une utilisation par le grand public Il inclut plusieurs optimisations spécifiquement destinées à être utilisées dans les réseaux neuronaux, y compris la multiplication simplifiée de matrices, et des entiers à 8 bits au lieu de 16 bits afin de renvoyer des niveaux de précision appropriés Dans cette formation en direct, les participants apprendront à tirer parti des innovations des processeurs TPU pour optimiser les performances de leurs propres applications IA À la fin de la formation, les participants seront en mesure de: Former différents types de réseaux de neurones sur de grandes quantités de données Utilisez des TPU pour accélérer le processus d'inférence jusqu'à deux ordres de grandeur Utiliser des TPU pour traiter des applications intensives telles que la recherche d'images, la vision nuageuse et les photos Public Développeurs Des chercheurs Ingénieurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson .
35 hours
Aperçu
TensorFlow ™ est une bibliothèque de logiciels open source pour le calcul numérique utilisant des graphiques de flux de données.

SyntaxNet est une structure de traitement de langage naturel par réseau de neurones pour TensorFlow .

Word 2Vec est utilisé pour l'apprentissage des représentations vectorielles de mots, appelées "imbrications de mots". Word 2vec est un modèle prédictif particulièrement efficace en calcul pour l’intégration de mots à partir de texte brut. Il se décline en deux saveurs, le sac-of-continu Word modèle s (CBOW) et le modèle Skip-Gram (Chapitre 3.1 et 3.2 dans Mikolov et al.).

Utilisés en tandem, SyntaxNet et Word 2Vec permettent aux utilisateurs de générer des modèles d’apprentissage intégré à partir de l’entrée en langage naturel.

Public

Ce cours est destiné aux développeurs et aux ingénieurs souhaitant travailler avec les modèles SyntaxNet et Word 2Vec dans leurs graphiques TensorFlow .

Une fois ce cours terminé, les délégués:

- comprendre la structure et les mécanismes de déploiement de TensorFlow
- être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration
- être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance
- être capable de mettre en œuvre une production avancée telle que des modèles de formation, des conditions d'intégration, la création de graphiques et la journalisation
35 hours
Aperçu
Ce cours commence par vous donner des connaissances conceptuelles sur les réseaux de neurones et plus généralement sur les algorithmes d'apprentissage automatique, d'apprentissage approfondi (algorithmes et applications).

La partie 1 (40%) de cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la bonne technologie: TensorFlow , Caffe , Theano, DeepDrive, Keras , etc.

La partie 2 (20%) de cette formation présente Theano, une bibliothèque python qui facilite l’écriture de modèles d’apprentissage approfondi.

La partie 3 (40%) de la formation serait largement basée sur Tensorflow - API de deuxième génération de la bibliothèque de logiciels open source de Go ogle pour Deep Learning . Les exemples et handson seraient tous fabriqués dans TensorFlow .

Public

Ce cours est destiné aux ingénieurs souhaitant utiliser TensorFlow pour leurs projets d' Deep Learning .

Une fois ce cours terminé, les délégués:

-

avoir une bonne compréhension des réseaux de neurones profonds (DNN), CNN et RNN

-

comprendre la structure et les mécanismes de déploiement de TensorFlow

-

être capable d'effectuer des tâches d'installation / environnement de production / architecture et configuration

-

être capable d'évaluer la qualité du code, effectuer le débogage, la surveillance

-

être capable de mettre en œuvre une production avancée comme des modèles de formation, la création de graphiques et la journalisation
21 hours
Aperçu
Microsoft Cognitive Toolkit 2x (anciennement CNTK) est une boîte à outils opensource et commerciale qui forme des algorithmes d'apprentissage en profondeur pour apprendre comme le cerveau humain Selon Microsoft, CNTK peut être 510x plus rapide que TensorFlow sur les réseaux récurrents, et 2 à 3 fois plus rapide que TensorFlow pour les tâches imagerelated Dans cette formation en ligne, les participants apprendront à utiliser Microsoft Cognitive Toolkit pour créer, former et évaluer des algorithmes d'apprentissage en profondeur à utiliser dans des applications IA commerciales impliquant de multiples types de données tels que données, paroles, textes et images À la fin de cette formation, les participants seront en mesure de: Accéder à CNTK en tant que bibliothèque à partir d'un programme Python, C # ou C ++ Utilisez CNTK en tant qu'outil autonome d'apprentissage automatique grâce à son propre langage de description de modèle (BrainScript) Utiliser la fonctionnalité d'évaluation du modèle CNTK à partir d'un programme Java Combiner les DNN feedforward, les réseaux convolutifs (CNN) et les réseaux récurrents (RNN / LSTM) Capacité de calcul d'échelle sur les processeurs, les GPU et plusieurs machines Accédez à des jeux de données volumineux en utilisant les langages de programmation et les algorithmes existants Public Développeurs Les scientifiques de données Format du cours Partie conférence, discussion en partie, exercices et pratique lourde de handson Remarque Si vous souhaitez personnaliser une partie de cette formation, y compris le langage de programmation de votre choix, veuillez nous contacter pour organiser .
21 hours
Aperçu
keras est une API de réseaux neuronaux de haut niveau pour un développement et une expérimentation rapides. Il fonctionne au-dessus de TensorFlow, CNTK, ou Theano.

cette formation en direct (sur site ou à distance) dirigée par un instructeur s’adresse aux personnes techniques qui souhaitent appliquer un modèle d’apprentissage approfondi aux applications de reconnaissance d’images.

à la fin de cette formation, les participants pourront:

- installer et configurer keras.
- rapidement prototype des modèles d’apprentissage profond.
- implémenter un réseau convolutionnel.
- implémenter un réseau récurrent.
- exécuter un modèle d’apprentissage profond sur une CPU et GPU.

format du cours

- conférence interactive et discussion.
- beaucoup d’exercices et de la pratique.
implémentation de - Hands-on dans un environnement Live-Lab.

cours options de personnalisation

- pour demander une formation personnalisée pour ce cours, s’il vous plaît nous contacter pour organiser.
- pour en savoir plus sur keras, s’il vous plaît visitez: https://keras.io/
21 hours
Aperçu
Le réseau de neurones artificiels est un modèle de données informatique utilisé dans le développement de systèmes d' Artificial Intelligence (AI) capables d'effectuer des tâches "intelligentes". Neural Networks sont couramment utilisés dans les applications Machine Learning (ML), qui sont elles-mêmes une implémentation de l'IA. Deep Learning est un sous-ensemble de ML.
28 hours
Aperçu
L'apprentissage automatique est une branche de l'intelligence artificielle dans laquelle les ordinateurs ont la capacité d'apprendre sans être explicitement programmé. L'apprentissage en profondeur est un sous-domaine de l'apprentissage automatique qui utilise des méthodes basées sur l'apprentissage de représentations de données et de structures telles que les réseaux de neurones. Python est un langage de programmation de haut niveau réputé pour sa syntaxe claire et sa lisibilité du code.

Au cours de cette formation en direct animée par un instructeur, les participants apprendront comment mettre en œuvre des modèles d'apprentissage en profondeur pour les opérations bancaires en utilisant Python au cours de la création d'un modèle de risque de crédit d'apprentissage en profondeur.

À la fin de cette formation, les participants seront en mesure de:

- Comprendre les concepts fondamentaux de l'apprentissage en profondeur
- Apprenez les applications et les utilisations de l'apprentissage en profondeur dans le secteur bancaire
- Utilisez Python , Keras et TensorFlow pour créer des modèles d’apprentissage approfondi du secteur bancaire.
- Construire leur propre modèle de risque de crédit pour l'apprentissage en profondeur en utilisant Python

Public

- Les développeurs
- Scientifiques de données

Format du cours

- Partie de conférence, partie de discussion, exercices et exercices intensifs
28 hours
Aperçu
This is a 4 day course introducing AI and it's application. There is an option to have an additional day to undertake an AI project on completion of this course.
21 hours
Aperçu
Le réseau de neurones artificiels est un modèle de données informatique utilisé dans le développement de systèmes d' Artificial Intelligence (AI) capables d'effectuer des tâches "intelligentes". Neural Networks sont couramment utilisés dans les applications Machine Learning (ML), qui sont elles-mêmes une implémentation de l'IA. Deep Learning est un sous-ensemble de ML.
21 hours
Aperçu
Caffe est un cadre d'apprentissage en profondeur conçu pour l'expression, la rapidité et la modularité.

Ce cours explore l’application de Caffe tant que cadre d’apprentissage approfondi pour la reconnaissance d’images en prenant comme exemple le MNIST.

Public

Ce cours convient aux chercheurs et ingénieurs Deep Learning intéressés par l'utilisation de Caffe tant que cadre.

Une fois ce cours terminé, les délégués seront en mesure de:

- comprendre la structure et les mécanismes de déploiement de Caffe
- effectuer des tâches d'installation / environnement de production / architecture et configuration
- évaluer la qualité du code, effectuer le débogage, la surveillance
- implémenter une production avancée telle que des modèles d'entraînement, implémenter des couches et se connecter
21 hours
Aperçu
Ce cours est un aperçu général de l’ Deep Learning sans approfondir les méthodes spécifiques. Il convient aux personnes qui souhaitent commencer à utiliser l'apprentissage en profondeur pour améliorer la précision de leurs prédictions.

Prochains cours Deep Learning (DL)

Weekend Deep Learning (DL) cours, Soir DL (Deep Learning) formation, Deep Learning (DL) stage d’entraînement, Deep Learning (DL) formateur à distance, Deep Learning (DL) formateur en ligne, Deep Learning (DL) formateur Online, Deep Learning (DL) cours en ligne, DL (Deep Learning) cours à distance, DL (Deep Learning) professeur à distance, Deep Learning visioconférence, Deep Learning (DL) stage d’entraînement intensif, Deep Learning formation accélérée, Deep Learning (DL) formation intensive, Formation inter Deep Learning (DL), Formation intra Deep Learning, Formation intra Enteprise DL (Deep Learning), Formation inter Entreprise Deep Learning (DL), Weekend Deep Learning (DL) formation, Soir Deep Learning (DL) cours, Deep Learning coaching, Deep Learning (DL) entraînement, DL (Deep Learning) préparation, Deep Learning (DL) instructeur, Deep Learning professeur, Deep Learning formateur, Deep Learning stage de formation, Deep Learning cours, Deep Learning sur place, Deep Learning formations privées, Deep Learning (DL) formation privée, Deep Learning (DL) cours particulier, Deep Learning (DL) cours particuliers

Réduction spéciale

Newsletter offres spéciales

Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque
Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.