Les formations Intelligence Artificielle | Les formations Artificial Intelligence (AI)

Les formations Intelligence Artificielle

Des formations locales en intelligence artificielle (IA) en direct, animées par un instructeur, expliquent par des exercices pratiques comment mettre en œuvre des solutions d'IA pour résoudre des problèmes concrets. La formation en intelligence artificielle est disponible en tant que "formation sur site en direct" ou "formation en direct à distance". La formation en direct sur site peut être effectuée localement chez le client à Quebec ou dans des centres de formation d'entreprise NobleProg dans Quebec . La formation en direct à distance est réalisée au moyen d'un poste de travail distant et interactif. NobleProg - Votre prestataire de formation local.

Machine Translated

Nos Clients témoignent

★★★★★
★★★★★

Nos clients

Plans de cours Intelligence Artificielle

Nom du Cours
Durée
Aperçu
Nom du Cours
Durée
Aperçu
14 hours
The aim of this course is to provide a basic proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
21 hours
In this instructor-led, live training in Quebec, participants will learn the most relevant and cutting-edge machine learning techniques in Python as they build a series of demo applications involving image, music, text, and financial data.

By the end of this training, participants will be able to:

- Implement machine learning algorithms and techniques for solving complex problems.
- Apply deep learning and semi-supervised learning to applications involving image, music, text, and financial data.
- Push Python algorithms to their maximum potential.
- Use libraries and packages such as NumPy and Theano.
28 hours
The aim of this course is to provide general proficiency in applying Machine Learning methods in practice. Through the use of the Python programming language and its various libraries, and based on a multitude of practical examples this course teaches how to use the most important building blocks of Machine Learning, how to make data modeling decisions, interpret the outputs of the algorithms and validate the results.

Our goal is to give you the skills to understand and use the most fundamental tools from the Machine Learning toolbox confidently and avoid the common pitfalls of Data Sciences applications.
28 hours
This course introduces linguists or programmers to NLP in Python. During this course we will mostly use nltk.org (Natural Language Tool Kit), but also we will use other libraries relevant and useful for NLP. At the moment we can conduct this course in Python 2.x or Python 3.x. Examples are in English or Mandarin (普通话). Other languages can be also made available if agreed before booking.
35 hours
This is a 5 day introduction to Data Science and Artificial Intelligence (AI).

The course is delivered with examples and exercises using Python
28 hours
This is a 4 day course introducing AI and it's application using the Python programming language. There is an option to have an additional day to undertake an AI project on completion of this course.
21 hours
Deep Reinforcement Learning refers to the ability of an "artificial agent" to learn by trial-and-error and rewards-and-punishments. An artificial agent aims to emulate a human's ability to obtain and construct knowledge on its own, directly from raw inputs such as vision. To realize reinforcement learning, deep learning and neural networks are used. Reinforcement learning is different from machine learning and does not rely on supervised and unsupervised learning approaches.

In this instructor-led, live training, participants will learn the fundamentals of Deep Reinforcement Learning as they step through the creation of a Deep Learning Agent.

By the end of this training, participants will be able to:

- Understand the key concepts behind Deep Reinforcement Learning and be able to distinguish it from Machine Learning
- Apply advanced Reinforcement Learning algorithms to solve real-world problems
- Build a Deep Learning Agent

Audience

- Developers
- Data Scientists

Format of the course

- Part lecture, part discussion, exercises and heavy hands-on practice
28 hours
In this instructor-led, live training in Quebec, participants will learn how to implement deep learning models for telecom using Python as they step through the creation of a deep learning credit risk model.

By the end of this training, participants will be able to:

- Understand the fundamental concepts of deep learning.
- Learn the applications and uses of deep learning in telecom.
- Use Python, Keras, and TensorFlow to create deep learning models for telecom.
- Build their own deep learning customer churn prediction model using Python.
7 hours
This course has been created for managers, solutions architects, innovation officers, CTOs, software architects and anyone who is interested in an overview of applied artificial intelligence and the nearest forecast for its development.
21 hours
Ce cours utilise une approche pratique pour enseigner OptaPlanner . Il fournit aux participants les outils nécessaires pour exécuter les fonctions de base de cet outil.
28 hours
This four day course is aimed at teaching how genetic algorithms work; it also covers how to select model parameters of a genetic algorithm; there are many applications for genetic algorithms in this course and optimization problems are tackled with the genetic algorithms.
7 hours
This is a classroom based training session in a presentation and Q&A format
14 hours
This instructor-led, live training in Quebec (online or onsite) is aimed at technical persons who wish to set up or extend an RPA system with more intelligent capabilities.

By the end of this training, participants will be able to:

- Install and configure UiPath IPA.
- Enable robots to manage other robots.
- Apply computer vision to locate screen objects with accuracy.
- Enable robots that can detect language patterns and carry out sentiment analysis on unstructured content.
14 hours
This instructor-led, live training in Quebec (online or onsite) is aimed at software testers who wish to have an AI driven software testing environment.

By the end of this training, participants will be able to:

- Automate unit test generation and parameterization with AI.
- Apply machine learning learning in a real world use-case.
- Automate the generation and maintenance of API tests with AI.
- Use machine learning methods to self-heal the execution of Selenium tests.
7 hours
This instructor-led, live training in Quebec (online or onsite) is aimed at marketers who wish to use AI to improve improve digital marketing strategies through valuable customer insights.

By the end of this training, participants will be able to:

- Leverage AI software to improve the way brands connect to users.
- Use chatbots to optimize the user-experience.
- Increase productivity and revenue through the automation of tasks.
14 hours
This instructor-led, live training in Quebec (online or onsite) is aimed at data scientists who wish to use IBM Cloud Pak to prepare data for use in AI solutions.

By the end of this training, participants will be able to:

- Install and configure Cloud Pak for Data.
- Unify the collection, organization and analysis of data.
- Integrate Cloud Pak for Data with a variety of services to solve common business problems.
- Implement workflows for collaborating with team members on the development of an AI solution.
21 hours
This instructor-led, live training in Quebec (online or onsite) is aimed at engineers who wish to program and create robots through basic AI methods.

By the end of this training, participants will be able to:

- Implement filters (Kalman and particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
7 hours
This instructor-led, live training in Quebec (online or onsite) is aimed at managers and business leaders who wish to learn about the fundamentals of artificial intelligence and manage AI projects for their organization.

By the end of this training, participants will be able to understand AI at a technical level and strategize using their organization’s data and resources to successfully manage AI projects.
80 hours
In this instructor-led, live training in Quebec (online or onsite), participants will learn the different technologies, frameworks and techniques for programming different types of robots to be used in the field of nuclear technology and environmental systems.

The 4-week course is held 5 days a week. Each day is 4-hours long and consists of lectures, discussions, and hands-on robot development in a live lab environment. Participants will complete various real-world projects applicable to their work in order to practice their acquired knowledge.

The target hardware for this course will be simulated in 3D through simulation software. The code will then be loaded onto physical hardware (Arduino or other) for final deployment testing. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.

By the end of this training, participants will be able to:

- Understand the key concepts used in robotic technologies.
- Understand and manage the interaction between software and hardware in a robotic system.
- Understand and implement the software components that underpin robotics.
- Build and operate a simulated mechanical robot that can see, sense, process, navigate, and interact with humans through voice.
- Understand the necessary elements of artificial intelligence (machine learning, deep learning, etc.) applicable to building a smart robot.
- Implement filters (Kalman and Particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
- Test and troubleshoot a robot in realistic scenarios.
120 hours
In this instructor-led, live training in Quebec (online or onsite), participants will learn the different technologies, frameworks and techniques for programming different types of robots to be used in the field of nuclear technology and environmental systems.

The 6-week course is held 5 days a week. Each day is 4-hours long and consists of lectures, discussions, and hands-on robot development in a live lab environment. Participants will complete various real-world projects applicable to their work in order to practice their acquired knowledge.

The target hardware for this course will be simulated in 3D through simulation software. The ROS (Robot Operating System) open-source framework, C++ and Python will be used for programming the robots.

By the end of this training, participants will be able to:

- Understand the key concepts used in robotic technologies.
- Understand and manage the interaction between software and hardware in a robotic system.
- Understand and implement the software components that underpin robotics.
- Build and operate a simulated mechanical robot that can see, sense, process, navigate, and interact with humans through voice.
- Understand the necessary elements of artificial intelligence (machine learning, deep learning, etc.) applicable to building a smart robot.
- Implement filters (Kalman and Particle) to enable the robot to locate moving objects in its environment.
- Implement search algorithms and motion planning.
- Implement PID controls to regulate a robot's movement within an environment.
- Implement SLAM algorithms to enable a robot to map out an unknown environment.
- Extend a robot's ability to perform complex tasks through Deep Learning.
- Test and troubleshoot a robot in realistic scenarios.
7 hours
La formation s'adresse aux personnes qui souhaitent apprendre les bases des réseaux de neurones et de leurs applications.
14 hours
Ce cours est une introduction à l'application de réseaux de neurones à des problèmes du monde réel à l'aide du logiciel R-project.
14 hours
This training course is for people that would like to apply Machine Learning in practical applications.

Audience

This course is for data scientists and statisticians that have some familiarity with statistics and know how to program R (or Python or other chosen language). The emphasis of this course is on the practical aspects of data/model preparation, execution, post hoc analysis and visualization.

The purpose is to give practical applications to Machine Learning to participants interested in applying the methods at work.

Sector specific examples are used to make the training relevant to the audience.
21 hours
Artificial Neural Network is a computational data model used in the development of Artificial Intelligence (AI) systems capable of performing "intelligent" tasks. Neural Networks are commonly used in Machine Learning (ML) applications, which are themselves one implementation of AI. Deep Learning is a subset of ML.
21 hours
Le réseau de neurones artificiels est un modèle de données informatique utilisé dans le développement de systèmes d' Artificial Intelligence (AI) capables d'effectuer des tâches "intelligentes". Neural Networks sont couramment utilisés dans les applications Machine Learning (ML), qui sont elles-mêmes une implémentation de l'IA. Deep Learning est un sous-ensemble de ML.
35 hours
This course is created for people who have no previous experience in probability and statistics.
14 hours
Ce cours couvre l'IA (mettant l'accent sur l' Machine Learning et l' Deep Learning ) dans l'industrie Automotive . Cela aide à déterminer quelle technologie peut (potentiellement) être utilisée dans plusieurs situations de la voiture: de l'automatisation simple à la prise de décision autonome en passant par la reconnaissance d'images.
28 hours
Ce cours vous donnera des connaissances sur les réseaux de neurones et plus généralement sur les algorithmes d’apprentissage automatique, d’apprentissage approfondi (algorithmes et applications).

Cette formation met davantage l'accent sur les principes fondamentaux, mais vous aidera à choisir la technologie TensorFlow : TensorFlow , Caffe , Teano, DeepDrive, Keras , etc. Les exemples sont réalisés dans TensorFlow .
21 hours
This instructor-led, live course provides an introduction into the field of pattern recognition and machine learning. It touches on practical applications in statistics, computer science, signal processing, computer vision, data mining, and bioinformatics.

The course is interactive and includes plenty of hands-on exercises, instructor feedback, and testing of knowledge and skills acquired.
21 hours
Type : Formation théorique avec applications décidées en amont avec les élèves sur Lasagne ou Keras selon le groupe pédagogique

Méthode pédagogique : présentation, échanges et études de cas

L’intelligence artificielle, après avoir bouleversé de nombreux domaines scientifiques, a commencé à révolutionner un grand nombre de secteurs économiques (industrie, médecine, communication, etc.). Néanmoins, sa présentation dans les grands media relève souvent du fantasme, très éloignée de ce que sont réellement les domaines du Machine Learning ou du Deep Learning. L’objet de cette formation est d’apporter à des ingénieurs ayant déjà une maîtrise des outils informatiques (dont une base de programmation logicielle) une introduction au Deep Learning ainsi qu’à ses différents domaines de spécialisation et donc aux principales architectures de réseau existant aujourd’hui. Si les bases mathématiques sont rappelées pendant le cours, un niveau de mathématique de type BAC+2 est recommandé pour plus de confort. Il est dans l’absolu possible de faire l’impasse sur l’axe mathématique pour ne conserver qu’une vision « système », mais cette approche limitera énormément votre compréhension du sujet.

Last Updated:

Prochains cours Artificial Intelligence

Weekend AI cours, Soir Artificial Intelligence formation, Artificial Intelligence stage d’entraînement, AI (Artificial Intelligence) formateur à distance, AI formateur en ligne, AI formateur Online, AI (Artificial Intelligence) cours en ligne, AI cours à distance, Intelligence Artificielle professeur à distance, AI (Artificial Intelligence) visioconférence, AI stage d’entraînement intensif, AI formation accélérée, AI formation intensive, Formation inter Intelligence Artificielle, Formation intra AI, Formation intra Enteprise AI, Formation inter Entreprise AI, Weekend Artificial Intelligence formation, Soir Intelligence Artificielle cours, AI coaching, AI (Artificial Intelligence) entraînement, AI (Artificial Intelligence) préparation, AI (Artificial Intelligence) instructeur, AI professeur, Intelligence Artificielle formateur, AI stage de formation, AI cours, AI sur place, Artificial Intelligence formations privées, Artificial Intelligence formation privée, Intelligence Artificielle cours particulier, Artificial Intelligence cours particuliersWeekend AI cours, Soir Artificial Intelligence formation, Artificial Intelligence stage d’entraînement, AI (Artificial Intelligence) formateur à distance, AI formateur en ligne, AI formateur Online, AI (Artificial Intelligence) cours en ligne, AI cours à distance, Artificial Intelligence (AI) professeur à distance, AI (Artificial Intelligence) visioconférence, AI stage d’entraînement intensif, AI formation accélérée, AI formation intensive, Formation inter Artificial Intelligence (AI), Formation intra AI, Formation intra Enteprise AI, Formation inter Entreprise AI, Weekend Artificial Intelligence formation, Soir Artificial Intelligence (AI) cours, AI coaching, AI (Artificial Intelligence) entraînement, AI (Artificial Intelligence) préparation, AI (Artificial Intelligence) instructeur, AI professeur, Artificial Intelligence (AI) formateur, AI stage de formation, AI cours, AI sur place, Artificial Intelligence formations privées, Artificial Intelligence formation privée, Artificial Intelligence (AI) cours particulier, Artificial Intelligence cours particuliers

Réduction spéciale

No course discounts for now.

Newsletter offres spéciales

Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque
Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.

This site in other countries/regions