Les formations MLOps

Les formations MLOps

Cours de formation de MLOps dirigé par un formateur sur place en direct á Quebec.

Nos clients

Plans de cours MLOps

Nom du Cours
Durée
Aperçu
Nom du Cours
Durée
Aperçu
28 hours
Aperçu
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is a machine learning library and Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (onsite or remote) is aimed at engineers who wish to deploy Machine Learning workloads to an AWS EC2 server.

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on AWS.
- Use EKS (Elastic Kubernetes Service) to simplify the work of initializing a Kubernetes cluster on AWS.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 hours
Aperçu
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (onsite or remote) is aimed at engineers who wish to deploy Machine Learning workloads to Azure cloud.

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on Azure.
- Use Azure Kubernetes Service (AKS) to simplify the work of initializing a Kubernetes cluster on Azure.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other AWS managed services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 hours
Aperçu
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (onsite or remote) is aimed at engineers who wish to deploy Machine Learning workloads to Google Cloud Platform (GCP).

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on GCP and GKE.
- Use GKE (Kubernetes Kubernetes Engine) to simplify the work of initializing a Kubernetes cluster on GCP.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other GCP services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 hours
Aperçu
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications.

This instructor-led, live training (onsite or remote) is aimed at engineers who wish to deploy Machine Learning workloads to IBM Cloud Kubernetes Service (IKS).

By the end of this training, participants will be able to:

- Install and configure Kubernetes, Kubeflow and other needed software on IBM Cloud Kubernetes Service (IKS).
- Use IKS to simplify the work of initializing a Kubernetes cluster on IBM Cloud.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Leverage other IBM Cloud services to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
28 hours
Aperçu
Kubeflow is a framework for running Machine Learning workloads on Kubernetes. TensorFlow is one of the most popular machine learning libraries. Kubernetes is an orchestration platform for managing containerized applications. OpenShift is an cloud application development platform that uses Docker containers, orchestrated and managed by Kubernetes, on a foundation of Red Hat Enterprise Linux.

This instructor-led, live training (onsite or remote) is aimed at engineers who wish to deploy Machine Learning workloads to an OpenShift on-premise or hybrid cloud.

- By the end of this training, participants will be able to:
- Install and configure Kubernetes and Kubeflow on an OpenShift cluster.
- Use OpenShift to simplify the work of initializing a Kubernetes cluster.
- Create and deploy a Kubernetes pipeline for automating and managing ML models in production.
- Train and deploy TensorFlow ML models across multiple GPUs and machines running in parallel.
- Call public cloud services (e.g., AWS services) from within OpenShift to extend an ML application.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
21 hours
Aperçu
MLOps is a set of tools and methodologies for combining Machine Learning and DevOps practices. The goal of MLOps is to automate and optimize the deployment and maintenance of ML systems in production.

This instructor-led, live training (onsite or remote) is aimed at engineers who wish to evaluate the approaches and tools available today to make an intelligent decision on the path forward in adopting MLOps within their organization.

By the end of this training, participants will be able to:

- Install and configure various MLOps frameworks and tools.
- Assemble the right kind of team with the right skills for constructing and supporting an MLOps system.
- Prepare, validate and version data for use by ML models.
- Understand the components of an ML Pipeline and the tools needed to build one.
- Experiment with different machine learning frameworks and servers for deploying to production.
- Operationalize the entire Machine Learning process so that it's reproduceable and maintainable.

Format of the Course

- Interactive lecture and discussion.
- Lots of exercises and practice.
- Hands-on implementation in a live-lab environment.

Course Customization Options

- To request a customized training for this course, please contact us to arrange.
Weekend MLOps cours, Soir MLOps formation, MLOps stage d’entraînement, MLOps formateur à distance, MLOps formateur en ligne, MLOps formateur Online, MLOps cours en ligne, MLOps cours à distance, MLOps professeur à distance, MLOps visioconférence, MLOps stage d’entraînement intensif, MLOps formation accélérée, MLOps formation intensive, Formation inter MLOps, Formation intra MLOps, Formation intra Enteprise MLOps, Formation inter Entreprise MLOps, Weekend MLOps formation, Soir MLOps cours, MLOps coaching, MLOps entraînement, MLOps préparation, MLOps instructeur, MLOps professeur, MLOps formateur, MLOps stage de formation, MLOps cours, MLOps sur place, MLOps formations privées, MLOps formation privée, MLOps cours particulier, MLOps cours particuliers

Réduction spéciale

Newsletter offres spéciales

Nous respectons le caractère privé de votre adresse mail. Nous ne divulguerons ni ne vendrons votre adresse email à quiconque
Vous pouvez toujours modifier vos préférences ou vous désinscrire complètement.

This site in other countries/regions